Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioinspir Biomim ; 19(3)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38569525

RESUMEN

The silent flight of barn owls is associated with wing and feather specialisations. Three special features are known: a serrated leading edge that is formed by free-standing barb tips which appears as a comb-like structure, a soft dorsal surface, and a fringed trailing edge. We used a model of the leading edge comb with 3D-curved serrations that was designed based on 3D micro-scans of rows of barbs from selected barn-owl feathers. The interaction of the flow with the serrations was measured with Particle-Image-Velocimetry in a flow channel at uniform steady inflow and was compared to the situation of inflow with freestream turbulence, generated from the turbulent wake of a cylinder placed upstream. In steady uniform flow, the serrations caused regular velocity streaks and a flow turning effect. When vortices of different size impacted the serrations, the serrations reduced the flow fluctuations downstream in each case, exemplified by a decreased root-mean-square value of the fluctuations in the wake of the serrations. This attenuation effect was stronger for the spanwise velocity component, leading to an overall flow homogenization. Our findings suggest that the serrations of the barn owl provide a passive flow control leading to reduced leading-edge noise when flying in turbulent environments.


Asunto(s)
Estrigiformes , Animales , Vuelo Animal , Plumas , Alas de Animales , Ruido
2.
Sci Rep ; 12(1): 11764, 2022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35817795

RESUMEN

Previous behavioural research on live sea lions has shown that they are able to detect the direction of oncoming vortices, even when impacting contralaterally. These experiments showed that the whisker system and the animal's neural processing is seemingly able to detect the Direction of Arrival (DoA) from just one side of the heads vibrissal pads. Therefore, temporal differences between whisker stimulation is a likely method for determining the angle. Herein, a theoretical model is presented based on multilateration, and tested by experimental studies on a 2D array of bio-inspired whiskers with regular spacing, and a 3D array of bio-inspired whiskers on a model head of a sea lion, as used in our previous studies. The results show that arrays of whiskers can in principle work as antennae to determine the DoA. This detection of the DoA is achieved by cross-correlation of triplets of whiskers, and Time Difference Of Arrival based multilateration, a method similar to signal processing in modern communication systems and other source localization applications. The results on the 2D array are conclusive and clearly support the hypothesis, while increased uncertainties were found for the 3D array, which could be explained by structural shortcomings of the experimental model. Possible ways to improve the signal are discussed.


Asunto(s)
Leones Marinos , Vibrisas , Animales , Leones Marinos/fisiología , Procesamiento de Señales Asistido por Computador , Vibrisas/fisiología
3.
Commun Biol ; 1: 27, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30271913

RESUMEN

The peregrine falcon (Falco peregrinus) is known for its extremely high speeds during hunting dives or stoop. Here we demonstrate that the superior manoeuvrability of peregrine falcons during stoop is attributed to vortex-dominated flow promoted by their morphology, in the M-shape configuration adopted towards the end of dive. Both experiments and simulations on life-size models, derived from field observations, revealed the presence of vortices emanating from the frontal and dorsal region due to a strong spanwise flow promoted by the forward sweep of the radiale. These vortices enhance mixing for flow reattachment towards the tail. The stronger wing and tail vortices provide extra aerodynamic forces through vortex-induced lift for pitch and roll control. A vortex pair with a sense of rotation opposite to that from conventional planar wings interacts with the main wings vortex to reduce induced drag, which would otherwise decelerate the bird significantly during pull-out. These findings could help in improving aircraft performance and wing suits for human flights.

4.
Biomed Eng Lett ; 8(3): 309-320, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30603215

RESUMEN

A computational study of the pulsating jet in a squared channel with a dynamic glottal-shaped constriction is presented. It follows the model experiments of Triep and Brücker (J Acoust Soc Am 127(2):1537-1547, 2010) with the cam-driven model that replicates the dynamic glottal motion in the process of human phonation. The boundary conditions are mapped from the model experiment onto the computational model and the three dimensional time resolved velocity and pressure fields are numerically calculated. This study aims to provide more details of flow separation and pressure distribution in the glottal gap and in the supraglottal flow field. Within the glottal gap a 'vena contracta' effect is generated in the mid-sagittal plane. The flow separation in the mid-coronal plane is therefore delayed to larger diffuser angles which leads to an 'axis-switching' effect from mid-sagittal to mid-coronal plane. The location of flow separation in mid-sagittal cross section moves up- and downwards along the vocal folds surface in streamwise direction. The generated jet shear layer forms a chain of coherent vortex structures within each glottal cycle. These vortices cause characteristic velocity and pressure fluctuations in the supraglottal region, that are in the range of 10-30 times of the fundamental frequency.

5.
Meccanica ; 52(8): 1781-1795, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28529383

RESUMEN

The fluid-structure interaction mechanisms of a coating composed of flexible flaps immersed in a periodically oscillating channel flow is here studied by means of numerical simulation, employing the Euler-Bernoulli equations to account for the flexibility of the structures. A set of passively actuated flaps have previously been demonstrated to deliver favourable aerodynamic impact when attached to a bluff body undergoing periodic vortex shedding. As such, the present configuration is identified to provide a useful test-bed to better understand this mechanism, thought to be linked to experimentally observed travelling waves. Having previously validated and elucidated the flow mechanism in Paper 1 of this series, we hereby undertake a more detailed analysis of spectra obtained for different natural frequency of structures and different configurations, in order to better characterize the mechanisms involved in the organized motion of the structures. Herein, this wave-like behaviour, observed at the tips of flexible structures via interaction with the fluid flow, is characterized by examining the time history of the filaments motion and the corresponding effects on the fluid flow, in terms of dynamics and frequency of the fluid velocity. Results indicate that the wave motion behaviour is associated with the formation of vortices in the gaps between the flaps, which itself are a function of the structural resistance to the cross flow. In addition, formation of vortices upstream of the leading and downstream of the trailing flap is seen, which interact with the formation of the shear-layer on top of the row. This leads to a phase shift in the wave-type motion along the row that resembles the observation in the cylinder case.

6.
Biol Open ; 4(12): 1715-26, 2015 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-26603471

RESUMEN

Recent pike-like predatory fishes attack prey animals by a quick strike out of rest or slow movement. This fast-start behaviour includes a preparatory, a propulsive and a final phase, and the latter is crucial for the success of the attack. To prevent prey from escape, predators tend to minimise the duration of the interaction and the disturbance caused to surrounding water in order to not be detected by the prey's lateral line sensory system. We compared the hydrodynamic properties of the earliest fossil representative of the pike-like morphotype, the Triassic actinopterygian Saurichthys, with several recent pike-like predators by means of computational fluid dynamics (CFD). Rainbow trout has been used as a control example of a fish with a generalist body shape. Our results show that flow disturbance produced by Saurichthys was low and similar to that of the recent forms Belone and Lepisosteus, thus indicative of an effective ambush predator. Drag coefficients are low for all these fishes, but also for trout, which is a good swimmer over longer distances but generates considerable disturbance of flow. Second-highest flow disturbance values are calculated for Esox, which compensates the large disturbance with its extremely high acceleration performance (i.e. attacks at high speeds) and the derived teleostean protrusible mouth that allows prey catching from longer distances compared to the other fishes. We show CFD modelling to be a useful tool for palaeobiological reconstruction of fossil fishes, as it allows quantification of impacts of body morphology on a hypothesised lifestyle.

7.
J Biomech Eng ; 137(8): 081001, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25969967

RESUMEN

The human lung is known to be asymmetric and heterogeneous which leads to an inhomogeneous distribution of air. Within the scope of this paper the influence of the upper airway tree geometry on ventilation distribution and the differences between conventional mechanical ventilation (CMV) and high frequency oscillatory ventilation (HFOV) will be analyzed. The comparison is carried out under the assumption of positive pressure ventilation. Thereby, the mechanics of lung tissue is expected to play a minor role. Oscillatory flow is therefore generated numerically at a 3D model geometry of the upper human airways. For large enough frequencies in the range of HFOV (here 7 Hz) the shape of the velocity profiles changes, but this had no measurable influence on the flow distribution. The flow division is rather governed by airway tree geometry, i.e., branch length, curvature, and tortuosity. A convective net transport of fresh air to the distal branches occurs due to the relocation of mass during ins-/expiration driven by secondary flow. However, a mixing by secondary flow plays a minor role as was suggested by the visualization of particle pathlines. The phenomenon of steady streaming is further investigated by calculating the mean flow of one breathing cycle. Streaming was found to contribute only to a minor percentage to the overall mass transport in the upper lung airways.


Asunto(s)
Aire , Ventilación de Alta Frecuencia , Pulmón/anatomía & histología , Modelos Anatómicos , Adulto , Humanos , Hidrodinámica , Pulmón/fisiología , Masculino
8.
J Morphol ; 276(1): 33-46, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25130288

RESUMEN

We investigated the mechanical properties (Young's modulus, bending stiffness, barb separation forces) of the tenth primary of the wings, of the alulae and of the middle tail feathers of Falco peregrinus. For comparison, we also investigated the corresponding feathers in pigeons (Columba livia), kestrels (Falco tinnunculus), and sparrowhawks (Accipiter nisus). In all four species, the Young's moduli of the feathers ranged from 5.9 to 8.4 GPa. The feather shafts of F. peregrinus had the largest cross-sections and the highest specific bending stiffness. When normalized with respect to body mass, the specific bending stiffness of primary number 10 was highest in F. tinnunculus, while that of the alula was highest in A. nisus. In comparison, the specific bending stiffness, measured at the base of the tail feathers and in dorso-ventral bending direction, was much higher in F. peregrinus than in the other three species. This seems to correlate with the flight styles of the birds: F. tinnunculus hovers and its primaries might therefore withstand large mechanical forces. A. nisus has often to change its flight directions during hunting and perhaps needs its alulae for this maneuvers, and in F. peregrinus, the base of the tail feathers might need a high stiffness during breaking after diving.


Asunto(s)
Falconiformes/anatomía & histología , Plumas/anatomía & histología , Animales , Columbidae , Módulo de Elasticidad
9.
Sports Biomech ; 13(2): 176-94, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25123002

RESUMEN

The undulatory underwater sequence is one of the most important phases in competitive swimming. An understanding of the recurrent vortex dynamics around the human body and their generation could therefore be used to improve swimming techniques. In order to produce a dynamic model, we applied human joint kinematics to three-dimensional (3D) body scans of a female swimmer. The flow around this dynamic model was then calculated using computational fluid dynamics with the aid of moving 3D meshes. Evaluation of the numerical results delivered by the various motion cycles identified characteristic vortex structures for each of the cycles, which exhibited increasing intensity and drag influence. At maximum thrust, drag forces appear to be 12 times higher than those of a passive gliding swimmer. As far as we know, this is the first disclosure of vortex rings merging into vortex tubes in the wake after vortex recapturing. All unsteady structures were visualized using a modified Q-criterion also incorporated into our methods. At the very least, our approach is likely to be suited to further studies examining swimmers engaging in undulatory swimming during training or competition.


Asunto(s)
Rendimiento Atlético/fisiología , Relojes Biológicos/fisiología , Modelos Biológicos , Oscilometría/métodos , Esfuerzo Físico/fisiología , Reología/métodos , Natación/fisiología , Simulación por Computador , Femenino , Humanos , Estrés Mecánico , Viscosidad , Adulto Joven
10.
PLoS One ; 9(2): e86506, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24505258

RESUMEN

This study investigates the aerodynamics of the falcon Falco peregrinus while diving. During a dive peregrines can reach velocities of more than 320 km h⁻¹. Unfortunately, in freely roaming falcons, these high velocities prohibit a precise determination of flight parameters such as velocity and acceleration as well as body shape and wing contour. Therefore, individual F. peregrinus were trained to dive in front of a vertical dam with a height of 60 m. The presence of a well-defined background allowed us to reconstruct the flight path and the body shape of the falcon during certain flight phases. Flight trajectories were obtained with a stereo high-speed camera system. In addition, body images of the falcon were taken from two perspectives with a high-resolution digital camera. The dam allowed us to match the high-resolution images obtained from the digital camera with the corresponding images taken with the high-speed cameras. Using these data we built a life-size model of F. peregrinus and used it to measure the drag and lift forces in a wind-tunnel. We compared these forces acting on the model with the data obtained from the 3-D flight path trajectory of the diving F. peregrinus. Visualizations of the flow in the wind-tunnel uncovered details of the flow structure around the falcon's body, which suggests local regions with separation of flow. High-resolution pictures of the diving peregrine indicate that feathers pop-up in the equivalent regions, where flow separation in the model falcon occurred.


Asunto(s)
Falconiformes , Vuelo Animal , Modelos Teóricos , Grabación en Video , Animales
11.
PLoS One ; 8(11): e77120, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24244273

RESUMEN

Snapping shrimp use one oversized claw to generate a cavitating high speed water jet for hunting, defence and communication. This work is an experimental investigation about the jet generation. Snapping shrimp (Alpheus-bellulus) were investigated by using an enlarged transparent model reproducing the closure of the snapper claw. Flow inside the model was studied using both High-Speed Particle Image Velocimetry (HS-PIV) and flow visualization. During claw closure a channel-like cavity was formed between the plunger and the socket featuring a nozzle-type contour at the orifice. Closing the mechanism led to the formation of a leading vortex ring with a dimensionless formation number of approximate ΔT*≈4. This indicates that the claw might work at maximum efficiency, i.e. maximum vortex strength was achieved by a minimum of fluid volume ejected. The subsequent vortex cavitation with the formation of an axial reentrant jet is a reasonable explanation for the large penetration depth of the water jet. That snapping shrimp can reach with their claw-induced flow. Within such a cavitation process, an axial reentrant jet is generated in the hollow cylindrical core of the cavitated vortex that pushes the front further downstream and whose length can exceed the initial jet penetration depth by several times.


Asunto(s)
Estructuras Animales/anatomía & histología , Estructuras Animales/fisiología , Decápodos/anatomía & histología , Decápodos/fisiología , Natación/fisiología , Animales
12.
PLoS One ; 8(5): e61548, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23671569

RESUMEN

The spitting cobra Naja pallida can eject its venom towards an offender from a distance of up to two meters. The aim of this study was to understand the mechanisms responsible for the relatively large distance covered by the venom jet although the venom channel is only of micro-scale. Therefore, we analysed factors that influence secondary flow and pressure drop in the venom channel, which include the physical-chemical properties of venom liquid and the morphology of the venom channel. The cobra venom showed shear-reducing properties and the venom channel had paired ridges that span from the last third of the channel to its distal end, terminating laterally and in close proximity to the discharge orifice. To analyze the functional significance of these ridges we generated a numerical and an experimental model of the venom channel. Computational fluid dynamics (CFD) and Particle-Image Velocimetry (PIV) revealed that the paired interior ridges shape the flow structure upstream of the sharp 90° bend at the distal end. The occurrence of secondary flow structures resembling Dean-type vortical structures in the venom channel can be observed, which induce additional pressure loss. Comparing a venom channel featuring ridges with an identical channel featuring no ridges, one can observe a reduction of pressure loss of about 30%. Therefore it is concluded that the function of the ridges is similar to guide vanes used by engineers to reduce pressure loss in curved flow channels.


Asunto(s)
Venenos Elapídicos/metabolismo , Elapidae/anatomía & histología , Diente/anatomía & histología , Animales , Simulación por Computador , Venenos Elapídicos/química , Elapidae/fisiología , Modelos Biológicos , Presión , Viscosidad
13.
Opt Express ; 21(2): 1726-40, 2013 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-23389157

RESUMEN

Planar velocity fields in flows are determined simultaneously on parallel measurement planes by means of an in-house manufactured light-field camera. The planes are defined by illuminating light sheets with constant spacing. Particle positions are reconstructed from a single 2D recording taken by a CMOS-camera equipped with a high-quality doublet lens array. The fast refocusing algorithm is based on synthetic-aperture particle image velocimetry (SAPIV). The reconstruction quality is tested via ray-tracing of synthetically generated particle fields. The introduced single-camera SAPIV is applied to a convective flow within a measurement volume of 30 x 30 x 50 mm³.


Asunto(s)
Algoritmos , Interpretación de Imagen Asistida por Computador/instrumentación , Interpretación de Imagen Asistida por Computador/métodos , Lentes , Iluminación/instrumentación , Fotograbar/instrumentación , Reología/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Tamaño de la Partícula
14.
J Biomech Eng ; 134(7)2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24763628

RESUMEN

Flow dynamics are studied for different ventilation conditions at a three-dimensional model of the human lung airways. The model is based on Horsfield and Weibel data and bifurcates down to the sixth generation. The flow is analyzed numerically and compared to experimental data received from exactly the same model. Numerical and experimental results agree well. Based on this agreement, flow behavior for conventional mechanical ventilation (CMV) as well as for high frequency oscillatory ventilation (HFOV) conditions can be analyzed. Velocity profiles as well as secondary flow structures are investigated during different phases of the unsteady flow. It is shown that the velocity profiles at peak inspiration and expiration are very similar for CMV and HFOV, probably due to too short branch lengths for the development of a frequency-dependent velocity profile. At the flow reversal times, characteristic zones of bidirectional mass flow emerge with increasing amplitude at higher frequencies. Furthermore, secondary flow structures are analyzed. This investigation reveals that the structures only depend on the local curvature and branch orientation, but are not influenced much by the nearby upper or lower branching generations.


Asunto(s)
Hemodinámica , Pulmón/fisiología , Modelos Biológicos , Humanos , Presión , Ventilación Pulmonar , Respiración
15.
J Acoust Soc Am ; 130(6): EL373-9, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22225129

RESUMEN

Flow is studied through a channel with an oscillating orifice mimicking the motion of the glottal-gap during phonation. Simulations with prescribed flow and wall-motion are carried out for different orifice geometries, a 2D slit-like and a 3D lens-like one. Although the jet emerges from a symmetric orifice a significant deflection occurs in case of the slit-like geometry, contrary to the 3D lens-like one. The results demonstrate the dependency of jet entrainment and vortex dynamics on the orifice geometry and the interpretation of asymmetric jet deflection with regard to the relevance of the Coanda effect in the process of human phonation.


Asunto(s)
Glotis/fisiología , Fonación/fisiología , Pliegues Vocales/fisiología , Simulación por Computador , Humanos , Modelos Biológicos , Oscilometría , Presión , Flujo Pulsátil/fisiología
16.
Curr Bioinform ; 6(3): 305-322, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23181007

RESUMEN

The process of human phonation involves a complex interaction between the physical domains of structural dynamics, fluid flow, and acoustic sound production and radiation. Given the high degree of nonlinearity of these processes, even small anatomical or physiological disturbances can significantly affect the voice signal. In the worst cases, patients can lose their voice and hence the normal mode of speech communication. To improve medical therapies and surgical techniques it is very important to understand better the physics of the human phonation process. Due to the limited experimental access to the human larynx, alternative strategies, including artificial vocal folds, have been developed. The following review gives an overview of experimental investigations of artificial vocal folds within the last 30 years. The models are sorted into three groups: static models, externally driven models, and self-oscillating models. The focus is on the different models of the human vocal folds and on the ways in which they have been applied.

17.
J Exp Biol ; 213(Pt 17): 2976-86, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20709926

RESUMEN

Rheophilic fish commonly experience unsteady flows and hydrodynamic perturbations. Instead of avoiding turbulent zones though, rheophilic fish often seek out these zones for station holding. A behaviour associated with station holding in running water is called entraining. We investigated the entraining behaviour of rainbow trout swimming in the wake of a D-shaped cylinder or sideways of a semi-infinite flat plate displaying a rounded leading edge. Entraining trout moved into specific positions close to and sideways of the submerged objects, where they often maintained their position without corrective body and/or fin motions. To identify the hydrodynamic mechanism of entraining, the flow characteristics around an artificial trout placed at the position preferred by entraining trout were analysed. Numerical simulations of the 3-D unsteady flow field were performed to obtain the unsteady pressure forces. Our results suggest that entraining trout minimise their energy expenditure during station holding by tilting their body into the mean flow direction at an angle, where the resulting lift force and wake suction force cancel out the drag. Small motions of the caudal and/or pectoral fins provide an efficient way to correct the angle, such that an equilibrium is even reached in case of unsteadiness imposed by the wake of an object.


Asunto(s)
Conducta Animal/fisiología , Hidrodinámica , Oncorhynchus mykiss/fisiología , Aletas de Animales/fisiología , Animales , Fenómenos Biomecánicos , Simulación por Computador , Modelos Biológicos , Reología , Cola (estructura animal)/fisiología , Factores de Tiempo
18.
J Acoust Soc Am ; 127(3): 1537-47, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20329854

RESUMEN

The factors contributing to human voice production are not yet fully understood. Even normal human phonation with a symmetric glottal opening area is still the subject of extensive investigation. Among others, it has already been shown that fluid dynamics has a strong influence on the vocal process. The full characterization of the glottal jet has not been accomplished yet. Time-resolved measurement and visualization of the three-dimensional (3D) flow downstream the human vocal folds are difficult if not impossible to perform in vivo. Therefore, it is common to use mechanical and numerical models with a simplified shape and motion profile of the vocal folds. In this article, further results regarding the 3D flow structure obtained in a 3:1 up-scaled dynamic glottis model (cam model) in a water circuit are given, extending earlier work [M. Triep et al. (2005). Exp. Fluids 39, 232-245]. The model mimics the temporal variation in the 3D contour of the glottal gap while water flow reduces the characteristic frequencies by the order of 1/140. The unsteady flow processes downstream of the vocal folds are visualized in slow motion and analyzed in detail via particle imaging techniques. The visualization results show complex 3D flow behavior of lengthwise jet contraction and axis switching. In addition, the time-dependent flow rate during the phonatory oscillation cycle is measured in detail. It is shown that the pressure loss is decreased in the presence of a second constriction downstream of the glottis in form of ventricular folds and it is observed that for this case the jet is stabilized in the divergent phase of the cycle.


Asunto(s)
Glotis/anatomía & histología , Glotis/fisiología , Modelos Biológicos , Fonación/fisiología , Voz/fisiología , Humanos , Imagenología Tridimensional
19.
Artif Organs ; 32(10): 778-84, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18959666

RESUMEN

For a long-term implementation of the magnetically driven CircuLite blood pump system, it is extremely important to be able to ensure a minimum washout flow in order to avoid dangerous stagnation regions in the gap between the impeller and the motor casing as well as near the pivot-axle area at the holes in the impeller's hub. In general, stagnation zones are prone to thrombus formation. Here, the optimal impeller/motor gap width will be determined and the washout flow for different working conditions will be quantitatively calculated. The driving force for this secondary flow is mainly the strong pressure difference between both ends of the gap. Computational fluid dynamics (CFD) and digital particle image velocimetry (DPIV) will be used for this analysis.


Asunto(s)
Corazón Auxiliar , Magnetismo/instrumentación , Simulación por Computador , Diseño de Equipo , Humanos , Modelos Cardiovasculares , Tamaño de la Partícula , Presión , Reología , Trombosis/prevención & control
20.
J Neurosci ; 28(17): 4479-87, 2008 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-18434526

RESUMEN

If exposed to bulk water flow, fish lateral line afferents respond only to flow fluctuations (AC) and not to the steady (DC) component of the flow. Consequently, a single lateral line afferent can encode neither bulk flow direction nor velocity. It is possible, however, for a fish to obtain bulk flow information using multiple afferents that respond only to flow fluctuations. We show by means of particle image velocimetry that, if a flow contains fluctuations, these fluctuations propagate with the flow. A cross-correlation of water motion measured at an upstream point with that at a downstream point can then provide information about flow velocity and flow direction. In this study, we recorded from pairs of primary lateral line afferents while a fish was exposed to either bulk water flow, or to the water motion caused by a moving object. We confirm that lateral line afferents responded to the flow fluctuations and not to the DC component of the flow, and that responses of many fiber pairs were highly correlated, if they were time-shifted to correct for gross flow velocity and gross flow direction. To prove that a cross-correlation mechanism can be used to retrieve the information about gross flow velocity and direction, we measured the flow-induced bending motions of two flexible micropillars separated in a downstream direction. A cross-correlation of the bending motions of these micropillars did indeed produce an accurate estimate of the velocity vector along the direction of the micropillars.


Asunto(s)
Vías Aferentes/fisiología , Proyectos de Investigación , Movimientos del Agua , Potenciales de Acción/fisiología , Animales , Carpa Dorada , Reología/métodos , Natación/fisiología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...